原文:http://www.wmyskxz.com/2020/02/29/redis-2-tiao-yue-biao/

zset 的数据结构,它类似于 Java 中的 SortedSetHashMap 的结合体,一方面它是一个 set 保证了内部 value 的唯一性,另一方面又可以给每个 value 赋予一个排序的权重值 score,来达到 排序 的目的

为什么使用跳跃表

首先,因为 zset 要支持随机的插入和删除,所以它 不宜使用数组来实现,关于排序问题,我们也很容易就想到 红黑树/ 平衡树 这样的树形结构,为什么 Redis 不使用这样一些结构呢?

  1. 性能考虑: 在高并发的情况下,树形结构需要执行一些类似于 rebalance 这样的可能涉及整棵树的操作,相对来说跳跃表的变化只涉及局部;
  2. 实现考虑: 在复杂度与红黑树相同的情况下,跳跃表实现起来更简单,看起来也更加直观;

本质是解决查找问题

我们先来看一个普通的链表结构:

img

我们需要这个链表按照 score 值进行排序,这也就意味着,当我们需要添加新的元素时,我们需要定位到插入点,这样才可以继续保证链表是有序的,通常我们会使用 二分查找法,但二分查找是有序数组的,链表没办法进行位置定位,我们除了遍历整个找到第一个比给定数据大的节点为止 (时间复杂度 O(n)) 似乎没有更好的办法。

但假如我们每相邻两个节点之间就增加一个指针,让指针指向下一个节点,如下图:

img

这样所有新增的指针连成了一个新的链表,但它包含的数据却只有原来的一半 _(图中的为 3,11)_。

现在假设我们想要查找数据时,可以根据这条新的链表查找,如果碰到比待查找数据大的节点时,再回到原来的链表中进行查找,比如,我们想要查找 7,查找的路径则是沿着下图中标注出的红色指针所指向的方向进行的:

img

这是一个略微极端的例子,但我们仍然可以看到,通过新增加的指针查找,我们不再需要与链表上的每一个节点逐一进行比较,这样改进之后需要比较的节点数大概只有原来的一半。

利用同样的方式,我们可以在新产生的链表上,继续为每两个相邻的节点增加一个指针,从而产生第三层链表:

img

在这个新的三层链表结构中,我们试着 查找 13,那么沿着最上层链表首先比较的是 11,发现 11 比 13 小,于是我们就知道只需要到 11 后面继续查找,从而一下子跳过了 11 前面的所有节点。

可以想象,当链表足够长,这样的多层链表结构可以帮助我们跳过很多下层节点,从而加快查找的效率。

更进一步的跳跃表

跳跃表 skiplist 就是受到这种多层链表结构的启发而设计出来的。按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似于一个二分查找,使得查找的时间复杂度可以降低到 _O(logn)_。

但是,这种方法在插入数据的时候有很大的问题。新插入一个节点之后,就会打乱上下相邻两层链表上节点个数严格的 2:1 的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点 (也包括新插入的节点) 重新进行调整,这会让时间复杂度重新蜕化成 _O(n)_。删除数据也有同样的问题。

skiplist 为了避免这一问题,它不要求上下相邻两层链表之间的节点个数有严格的对应关系,而是 **为每个节点随机出一个层数(level)**。比如,一个节点随机出的层数是 3,那么就把它链入到第 1 层到第 3 层这三层链表中。为了表达清楚,下图展示了如何通过一步步的插入操作从而形成一个 skiplist 的过程:

img

从上面的创建和插入的过程中可以看出,每一个节点的层数(level)是随机出来的,而且新插入一个节点并不会影响到其他节点的层数,因此,插入操作只需要修改节点前后的指针,而不需要对多个节点都进行调整,这就降低了插入操作的复杂度。

现在我们假设从我们刚才创建的这个结构中查找 23 这个不存在的数,那么查找路径会如下图:

img